Signless Laplacians of finite graphs

نویسنده

  • Dragoš Cvetković
چکیده

We survey properties of spectra of signless Laplacians of graphs and discuss possibilities for developing a spectral theory of graphs based on this matrix. For regular graphs the whole existing theory of spectra of the adjacency matrix and of the Laplacian matrix transfers directly to the signless Laplacian, and so we consider arbitrary graphs with special emphasis on the non-regular case. The results which we survey (old and new) are of two types: (a) results obtained by applying to the signless Laplacian the same reasoning as for corresponding results concerning the adjacency matrix, (b) results obtained indirectly via line graphs. Among other things, we present eigenvalue bounds for several graph invariants, an interpretation of the coefficients of the characteristic polynomial, a theorem on powers of the signless Laplacian and some remarks on star complements. © 2007 Elsevier Inc. All rights reserved. AMS classification: 05C50

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela Nested Graphs with Bounded Second Largest ( Signless Laplacian

Nested split and double nested graphs (commonly named nested graphs) are considered. General statements regarding the signless Laplacian spectra are proven, and the nested graphs whose second largest signless Laplacian eigenvalue is bounded by a fixed integral constant are studied. Some sufficient conditions are provided and a procedure for classifying such graphs in particular cases is provide...

متن کامل

Signless Laplacians and Line Graphs

AMS Mathematics Subject Classification (2000): 05C50

متن کامل

Eigenvalue Bounds for the Signless Laplacian

We extend our previous survey of properties of spectra of signless Laplacians of graphs. Some new bounds for eigenvalues are given, and the main result concerns the graphs whose largest eigenvalue is maximal among the graphs with fixed numbers of vertices and edges. The results are presented in the context of a number of computer-generated conjectures.

متن کامل

The Signless Laplacian Estrada Index of Unicyclic Graphs

‎For a simple graph $G$‎, ‎the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$‎, ‎where $q^{}_1‎, ‎q^{}_2‎, ‎dots‎, ‎q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$‎. ‎In this paper‎, ‎we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...

متن کامل

SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006